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1 Introduction

The self-avoiding walk (SAW) is one of the simplest basic problems in statis-
tical physics. In short a self-avoiding walk is a sequence of moves on a lattice
or in other words a path. These paths are not allowed to cross themself i.e.
they do not visit a site more than once. These paths are used to describe
polymers with excluded volume or other chain-like entities. Despite that,
not much about these paths is known in a rigorous mathematical fashion.
Therefore, physicists have provided numerous conjectures that are believed
to be true and are strongly supported by numerical simulations.

The most intuitive approach would be to simply enumerate all possible self-
avoiding walks. This was done as early as 1992 and up to a length of 39
steps [1]. With more advanced and efficient algorithms, one can archive even
longer walks up to a length of 71 steps [2].

Due to the small lengths of these enumerated walks compared to real poly-
mers1, it is chosen to rely on random sampling to obtain numerical results
i.e. Monte Carlo methods and in particular the pivot algorithm.

Even as early as 1988, using this pivot algorithm walks of up to 10000 steps
could be generated [3]. And later with an even more efficient implementation
up to 268 million steps [4].

As can be seen, computer simulations play a big role at obtaining knowledge
about the behavior of this model and there was quite some work done in the
last 50 years in addition to the ones mentioned before.

Let us restrict the definition of self-avoiding walks a bit and make it even
more interesting by adding periodic boundary conditions. One extends the
original self-avoiding walks by adding a copy of them at there respective
start- and endpoints.

Afterwards, if these new periodic walks are still self-avoiding what can one
say about changes with regard to the normal self-avoiding walks? Which
conjectures change or even which stay the same, compared to normal self-
avoiding walks?

In the following thesis I am going to look at some of the main proportion-
alities of self-avoiding walks and compare them to periodic SAWs. Such as
the critical exponent ν and connective constant µ. The observed statistical
quantities are than compared to exact results obtained via enumeration and
the normal self-avoiding case, for which a lot of reference data can be found.

1Typical polymers such as HDPE can be composed of 10.000 monomers/steps.
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2 Theoretical background

In general a N-step self-avoiding walk ω, on a d-dimensional hypercubic
lattice2 Zd, is defined as a sequence of coordinate points w(i) ∈ Zd or also
called sites. The walk

ω = (ω(0), ω(1), ..., ω(N)) (2.1)

consists of N + 1 sites and has to satisfy the condition |ω(j + 1)−ω(j)| = a
i.e. the step length is always a, whereby a is the lattice constant for the
hypercubic lattice.

In the following we only look at two dimensions, hence the 2-dimensional
hypercubic lattice. In other words this lattice is the square lattice. The
lattice constant is in the following proposed to be one unit long.

The walk is not allowed to visit a site more than once or in other words
there exist no two equal sites in the sequence. One could say as condition
for this self-avoidance |w(j)−w(i)| 6= 0 for all pairwise distinct i, j ∈ [0, N ].

A walk is defined to always start at the coordinate origin i.e. ω(0) = ~0 and
one can define the length of such a walk as

N = |ω| =
N−1∑
i=0
|ω(i+ 1)− ω(i)| . (2.2)

The length is always equal to the number of bonds N .

If one counts all the possible walks cN for a given length N , one expects to
find the behaviour of cN to be

cN ≈ AµNNγ−1 (2.3)

where A, µ, γ are dimension-dependent positive constants, which I will
further contemplate in the following.

2.1 Connective constant

If this proportionality (2.3) holds true, taking the limit gives

µ = lim
N−>∞

c
1/N
N (2.4)

2Considering crystal structure, a d-dimensional hypercubic lattice has a simple cubic crystal
structure in d-dimensions.
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and hence there must exist a limit for the connective constant µ, by

µ ≤ c1/N
N . (2.5)

This constant describes the average number of possible step directions (con-
nections) a walk has at every single site. For example, a normal random
walk on the 2-dimensional hypercubic lattice Z2 has the connectivity con-
stant of µrw = 4. Therefore, there are four equally as likely step directions
for every single site and hence there are 4N possible walks.

The exact value of µ is not known for most lattices3 but is considered to be
µsq = 2, 63815853031(3) [5] for the square lattice.

As always if one considers the periodic case that will be defined later, it is
not known if any of this still holds. However, it is expected to hold and
should approach a limit as well.

2.2 End to end distance

The distance from the start of the walk i.e the origin ω(0) to the end of a
walk ω(N) is called end to end distance.

For one considered length N it is necessary to find the average end to end
distance over multiple/all walks. The average distance (squared) for all
possible walks of one length N is given by the mean-square displacement

〈|ω(N)|2〉 = 1
cN

∑
ω:|ω|=N

|ω(N)|2 . (2.6)

The sum is taken over all considered walks with the length |ω| = N , whereby
cN is the number of considered walks. As a reminder the walks haveN bonds
but N + 1 sites.

It is believed that the mean-square displacement will not always be linear
in the number of step. The average end to end distance 〈|ω(N)|2〉 behaves
proportional to the length of the walk N .

〈|ω(N)|2〉 ∝ N2ν (2.7)

with ν as dimension-dependent positive constants.
3The only exact values are known for the hexagonal lattice and the (3.122) lattice.
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2.3 Generating functions

In discrete mathematics, generating functions are a powerful tool to effi-
ciently represent sequences. In the case of self-avoiding walks they can be
used to describe all possible walks on a given lattice.

For our use case generating function are defined as the power series

χ(z) =
∞∑
N=0

cNz
N (2.8)

whereby the coefficient cN tells us how many walks are possible for the
length N .

This series can be constructed if one knows all coefficients cN , but there is
no way of calculating them in a mathematical rigorous fashion4. As such
physicists have come up with another way of obtaining them. For very small
lengths it is possible to count these coefficients by hand, but that gets tedious
quite fast. Another way would be to use computers to do this enumeration,
which is explained later on in section 3.1.

There are some advanced methods which use generating functions. These
methods can be used to more efficiently enumerate all possible walks as
can be seen in [6], but usually the transfer matrix method used is to do
enumeration to a greater extend.

In a following section I am going to exactly enumerate the coefficients cN
up to a length of N = 18 for both normal and periodic self-avoiding walks.

These coefficients can be used to construct an approximation for the gener-
ating function and can be compared with the lower bound

χ(z) ≥
∞∑
N=0

µNzN = 1
1− µz . (2.9)

This follows from (2.5) and can be seen at greater length in [7, p. 13].

2.4 Gyration radius

The radius of gyration is normaly used to describe the dimension of a poly-
mer chain i.e. a self-avoiding walk.

4At least it is not possible for the square lattice.
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As before in the end to end distance case one looks at the average over all
considered walks, therefore the mean-square radius of gyration is defined as

〈|S(N)|2〉 = 1
cN

∑
ω

|S(N)|2 (2.10)

with

|S(N)|2 = 1
N + 1

N∑
i=0

(ω(i)− ωmean)2 (2.11)

= 1
N + 1(

N∑
i=0

ω(i)− ( 1
N + 1

N∑
j=0

ω(j)))2. (2.12)

In other words it is defined as the average squared distance from any site of
the walk to its center of mass.

Very little is proven about this quantity, especially in the periodic case. It
is believed to have the asymptotic behavior

〈|S(N)|2〉 ∝ N2ν . (2.13)

This is the same proportionality as for the end to end distance (2.7), except
for a different proportionality constant or in other words except a different
amplitude. Later it will be seen, that this proportionality constant is way
smaller than the end to end distance constant.

2.5 Correction to scaling

Since only relativly smallN are taken into account for the enumeration, I will
get into why later, one should consider the correction to scaling exponents
∆i which alters our anticipated scaling relation (2.3) to

cN ≈ AµNNγ−1(1 +B1N
−∆1 +B2N

−∆2 + ...) . (2.14)

Only the leading term was used in the following analysis of the enumeration,
since the terms after it are believed to be a lot smaller and not of statistical
relevance. For the enumeration of the critical exponent ν, one modifies (2.7)
with the correction-to-scaling term to obtain

〈|w(N)|2〉 ≈ DN2ν(1 + EN−∆1) . (2.15)

A more detailed explaination and appealing evidence, that the leading cor-
rection term is ∆1 = 3/2, can be found in [8].
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2.6 Periodic boundary conditions

In the following we only accept walks if they suffice periodicity. There are
multiple ways to define such periodicity.

One could define a finite lattice and add periodic boundaries at its edges.
This is done a lot for spin models such as the potts model. However, for
the case of random walks on a lattice this would restrict our visitable sites
and one would have to scale the lattice according to the walks length, which
could be proven to be quite troublesome.

The chosen other approach is done without restricting the walks to a finite
lattice. Consider G to be the group of orthogonal transformations and the
symmetry operation g ∈ G, which will be discussed a bit later or as seen
in [3]. Let ω be our original self-avoiding walk with length N and ω′ the
original walk transformed by a symmetry operation gi and translated by a
vector b ∈ Z2 i. e.

ω′ = giω + b . (2.16)

Now to obtain a periodic self-avoiding walk one adds two of such transformed
walks to the original walk. The first transformed walk ω′− is translated such
that the end point is at the start point of the original walk, i.e. ω′− =
ωgi − w(N). The second walk ω′+ is translated in such a way, that its start
point is at the end of the original walk, or in other words ω′+ = ωgi +w(N).
The combined walk is than defined as

Ω = ω′− ◦ ω ◦ ω′+ (2.17)

and if this combined walk is still a valid self-avoiding walk, the walk ω is
considered periodic with respect to the chosen symmetry operation gi.

As defined above the original walk always starts at the coordinate origin
and an example for this method can be seen in figure 1.
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Figure 1: Sample image of a periodic self avoiding walk with a rotation
by π/2. Where the original walk is green and the rotated ones are red.

To make the transformation and translation of the walks easier on myself
and hopefully the simulations as well, I defined a walk as a sequence of step
directions instead of a sequence of sites i.e up, down, left, right.

A bond walk now called γ of a length N 5 is expressed as sequence of step
directions. The only allowed steps are the unit vectors ±~ek on the observed
2-dimensional hypercubic lattice Z2 and every step is still one unit long. In
other words the walk γ is defined as

γ = (γ(0), ..., γ(N − 1)) (2.18)

whereby

γ(i) = ±
(

1
0

)
,±
(

0
1

)
. (2.19)

If one again looks at the construction of a periodic walk but now consid-
ering the walk γ instead of ω, it is not necessary anymore to translate the
transformed walks γ′ to the end point or start point of the original walk.
The sequence is translation independent i.e for every b ∈ R2

γ = γ + b (2.20)

holds true.

I hope to achieve better computation times because of this small change,
since it is not necessary to keep track of the position vectors anymore. The
pivot operations should also be a bit more efficient. On the other hand, it is

5The length N is equivalent to the monomere walks ω.
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a bit more troublesome to verify the self-avoidance of the walks. To do that
one computes every position and checks if the position is occupied more than
once, since it is necessary to retrospectively compute the positions to check
the self-avoidance, one could expect worse performance for this validation.

In the considered two dimensions, G is the dihedral group and the trans-
formed walks γ′ = giγ are formed with one of the 8 following operations gi
i ∈ [0, 7]. The operations can all be formed with a transformation matrix as
well but since we use bond walks, it should be way more efficient to do the
symmetry operations according to figure 2.

g0 Identity:
There is no change in the walks step directions.

g1,2 Rotation by ±π
2 :

We check every direction the walk takes and change it according
to figure 2a, we could do all of these operations with a transformation
matrix as well, but the chosen approach should be more efficient for
the simulation.

g3 Rotation by π:
We have to change every up step to a down step and every left

step to a right step and vice versa as can be seen in figure 2b.

g4,5 Axis reflections:
By reflecting our walk on the x-axis we change every up step to a

down step and every down step to an up step. The y-axis reflection is
done the same way with the left and right steps which can be seen in
figure 2c.

g6,7 Diagonal reflection:
By reflection of our walk on the diagonal lines x = y and x = −y

we have to change the step directions according to figure 2d.

As a short note in three dimensions, there are 36 different symmetry oper-
ations, in contrast to the 8 ones in two dimensions.

It is easy to see, that every periodic walk, which has to suffice a rotation by
π is not valid per definition! One can see this with relative ease, since the
end and start sites will always overlap. An example for this can be seen in
figure 3.

11



U + π
2

��−π
2



L

+ π
2

44

−π
2

**

R

+ π
2tt

−π
2

jj

D+ π
2

TT
−π

2

JJ

(a) Rotation by ±π
2

U

±π

��

L // Roo

D

OO

(b) Rotation by ±π

U

��

L y-axis // Roo

D

x-
ax

is

OO

(c) Reflection on the x or y axis

U
1. diagonal

��

2. diagonal




L

44

**

R

tt

jj

D

TT JJ

(d) Reflection on the lines x = y or
x = −y

Figure 2: Change in step direction by applying a symmetry operation gi
to a walk γ.

Figure 3: Sample image of an invalid periodic self avoiding with a
rotation by π, where the original walk is green and the rotated ones are red.
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Since the rotation by ±π
2 and the four reflections are pairwise symmetric

one also expects to get the same pairwise results for these operations. This
will hold true and will be seen easier on the basis of the enumeration later.
One could also look at the mathematical definition of the dihedral group G
in two dimensions (klein four-group) and see this symmetric behaviour with
relative ease.

2.7 Classification in categories

To achieve a better comparison between these different symmetric opera-
tions, it could be useful to arrange them into different categories. I want to
introduce three different categories Ki. They were chosen roughly by the
likelyhood of obtaining a valid periodic walk γ after applying a symmetry
operation gi to a walk.

These categories accommodate bond walks γ, if the combined walk

Γ = (giγ ◦ γ ◦ giγ) (2.21)

is a valid self-avoiding walk. As explained above the transformed bond walks
giγ do not have to be translated.

The first category K1 houses all walks, that are valid with the exact copy
of the original walk added at the start- and the endpoint. The second one
K2 is a subset of K1 and accommodates all walks that additionally fulfill
periodic boundaries with respect to a rotation by +π

2 or −π
2 . K3 is again a

subset of K2, which further restricts the accepted walks by periodicity with
mutual respect to one axis reflection and one diagonal reflection.

Or in short words, the walk γ has to be a valid periodic self-avoiding walk,
which fulfills different symmetric operations. Depending on the different
symmetric operations the original walk gets sorted into different categories.
The different symmetric operations and their corresponding categories are
shown in table 1.

g0 g1 or g2 g4 or g5 g6 or g7

K1 x
K2 x x
K3 x x x x

Table 1: Classifications of the three different considered categories.

Since the symmetric operations are pairwise symmetric and yield the same
global observables, one can always only consider one of the pairwise sym-
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metric operations i.e rotation, axis reflection and diagonal reflection. Hence,
these pairwise symmetric operations are put into one column in table 1.
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3 Methods

All results obtained are either from exact enumeration or Monte Carlo meth-
ods i.e. the pivot algorithm. Monte Carlo methods are in the following used
to get a statistical estimate of the connective constant µ and the critical
exponent ν. All results are later compared to the estimates obtained from
the exact enumeration.

3.1 Exact enumeration

To obtain exact results for walks of length N , one has to get every possible
paths, that the walks can occupy on the chosen lattice. This can be done
via „bruteforce“ iterating over every possible step the walks can take, which
is explained later to greater extend. One could also use the transfer matrix
method as can be seen in [9] and later in [10]. The transfer matrix method
is more efficient, but since in this case the enumeration is only done to
get reference values, the easier but less efficient way of bruteforce iterating
should be sufficient.

I used the following recursive algorithm i.e. „bruteforce“ iterating for the
periodic case:

1. Do a step in every direction.

2. Check if step was valid, if not terminate the walk.

3. Check if walk has reached the desired length and if that is the case,
break the recursion. Also check if the walk fulfills any of the desired
periodic boundary conditions, if that is the case, add the walk to the
list of viable walks.

4. If walk has not reached the desired length, do another step in every
direction (goto 1.).

The exact enumeration is very useful at obtaining results for small lengths,
but as N approaches bigger and bigger numbers the computing time nec-
essary to perform the enumeration exceeds the feasible. E.g. it took about
40 computing hours for the enumeration of length N = 18. As a short
note it was possible to get way longer walks6 for the normal case without
periodic boundary conditions, hence the periodicity check took quite some
computing power.

6Normal self-avoiding walks were enumerated up to a length of N = 25.
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Overall, a length of N = 18 is not enough to conclude limiting behavior i.e.
the critical exponent or the connective constant. Therefore, one additionally
uses a different approach.

3.2 Pivot algorithm

The pivot algorithm is a dynamic Monte Carlo algorithm, which generate
self-avoiding walks in a canonical ensemble (fixed number of steps N). A
good starting point to read up on Monte Carlo methods is [11]. The pivot
algorithm was replicated and slightly modified from [3].

It is used in the following to generate new valid walks with periodic boundary
conditions. The pivot algorithm is done as follows:

1. First a normal self-avoiding walk is created at random. (One could also
start with an easy case e.g. a rod, which was done in the following.)

2. A random pivot point k along the walk (0 ≤ k ≤ N − 1) is chosen
according to any preset strictly positive probabilities p0, ..., pN−1. In
this bachelor thesis we consider the uniform distribution (pk = 1/N
for all k).

3. We chose a symmetry operation gj ∈ G again according to any pre-
set strictly positive probability. Now we apply this operation to the
walk from the pivot point k onwards, i.e gj(γk, γk+1, ..., γN ). Since we
have only 8 possible operations in 2 dimensions and the operation g0
(identity operation) can be ignored our probability for any operation
is again the uniform distribution pg = 1/7.

4. Now we check if our generated walk is still valid. If it is, the properties
interesting to us are recorded. Otherwise the walk is discarded and we
start again from 2., with the last valid walk.

5. At last if the walk is valid, we check if it is also valid for every single
periodic boundary condition defined above. The walks are added to a
list accordingly. After that we start again at 2. with the new walk.
The validation for the periodic boundary condition can be easily done
in parallel.

We record any global or local properties that are interesting for our studies.
Here that is the acceptance fraction f , the end to to end distance |wN |2 and
the gyration radius |SN |2.
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Since the pivot moves are very radical, after a few successful steps the global
conformation of the walk should have reached an essentially new state. We
expect the same for the global properties of the walk, e.g squared end-to-
end distance |wN |2 or the squared gyration radius |SN |2. One can easily
confirm this fact by validating the autocorrelation time or simply looking at
an autocorrelation plot for the selected properties. This was done later on
and can be seen in figure 8 and figure 9.

Since random numbers or better said pseudo random numbers play a big
role in Monte Carlo algorithms i.e. picking a pivot point and choosing a
symmetry operation, one should look precisely at the generation of such.
The simulation programs for the pivot algorithm used the mersenne twister
pseudo-random-number generator, which is known to generate good random
numbers [12].

3.3 Weighted least squares

In the following analysis for the enumeration and the pivot algorithm some
regression has to be done e.g. for the critical exponent ν. The following
explanations can be seen at greater extend in [7, p. 292-296].

In short one takes the equation (2.7) or (2.13), which gives a two-parameter
family of curves

Y = AN2ν . (3.1)
Or with considerations to the dominant correction term, as can be seen in
section (2.5), gives the four-parameter family

Y = AN2ν(1 +BN−∆) . (3.2)

To fit these curves one uses the method of least squares regression. Linear
regression functions are the easiest to work with, so by taking the logarithm
of (3.1) and (3.2), we obtain

log Y = logA+ 2ν logN (3.3)

or again by taking the correction to scaling into account

log Y = logA+ 2ν logN +BN−∆ . (3.4)

The last part of (3.4) was obtained by the approximation log(x+ 1) ≈ x for
x near 0.

For now only considering (3.3), normal least squares are done by minimizing
the sum of square

m∑
i=1

(log Ŷi − logA− 2ν logNi)2 . (3.5)
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Sadly this is not sufficient for our case, since the variance of log Ŷi is not the
same for every i. Instead one uses weighted least squares, weighting each
term to the inverse of its (estimated) variance, so that the Yi’s, in which one
has more confidence are considered, to a greater extend.

For our case considering the variance v2
i , then the least squares estimates

ˆlogA and ν̂ are the values of logA and ν that minimize the weighted sum
of square

m∑
i=1

1
v2
i

(log Ŷi − logA− ν · 2 logNi)2 . (3.6)

Whereby the minimized values are

ν̂ =
∑
v−2
i

∑
v−2
i 2 logNi log Ŷi −

∑
v−2
i 2 logNi

∑
v−2
i log Ŷi∑

v−2
i

∑
v−2
i (2 logNi)2 − (

∑
v−2
i 2 logNi)2 (3.7)

and
ˆlogA =

∑
v−2
i log Ŷi − ν̂

∑
v−2
i 2 logNi∑

v−2
i

. (3.8)

This looks quite complicated, but is actually not that hard to implement
and is done by a lot of different libraries e.g. scipy for python or GNU
Scientific Library for C/C++.

In the following the scipy library was used to do the weighted least square
regressions.
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4 Enumeration

The enumeration of all SAWs with PBC was done with the method explained
above and up to a length of N = 18. The simulation was written in C++
and analysed with python using mainly the scipy library [13].

4.1 Generating functions

As defined in equation (2.8) one can determine the coefficients of the gener-
ating function by recursively counting (enumerating) all possible walks for
each length N .

The coefficients obtained from the enumeration are given in table 2. They
are sorted by the different categories as proposed in section 2.6 and the
normal self-avoiding walk was also added as reference. The percentage values
are noted down for an easier comparison between the normal self-avoiding
walks and the periodic walks.

cN cNK1 cNK2 cNK3

1 4 4 100.0000% 4 100.0000% 2 50.0000%
2 12 12 100.0000% 4 33.3333% 2 16.6667%
3 36 28 77.7778% 12 33.3333% 4 11.1111%
4 100 76 76.0000% 28 28.0000% 12 12.0000%
5 284 204 71.8310% 60 21.1268% 22 7.7465%
6 780 540 69.2308% 140 17.9487% 56 7.1795%
7 2172 1404 64.6409% 332 15.2855% 124 5.7090%
8 5916 3724 62.9479% 852 14.4016% 310 5.2400%
9 16268 9748 59.9213% 2068 12.7121% 744 4.5734%
10 44100 25772 58.4399% 5236 11.8730% 1826 4.1406%
11 120292 67940 56.4792% 13044 10.8436% 4468 3.7143%
12 324932 179068 55.1094% 33220 10.2237% 11168 3.4370%
13 881500 472580 53.6109% 83356 9.4562% 27688 3.1410%
14 2374444 1245620 52.4594% 213292 8.9828% 69768 2.9383%
15 6416596 3286308 51.2158% 540468 8.4230% 174500 2.7195%
16 17245332 8666956 50.2568% 1385652 8.0349% 441812 2.5619%
17 46466676 22861604 49.2000% 3528868 7.5944% 1112284 2.3937%
18 124658732 60301764 48.3735% 9080964 7.2847% 2831496 2.2714%

Table 2: Generating function coefficients for all SAWs with different
single periodic boundary conditions.

The coefficients for the normal case without periodicity are confirmed to be
true, as can be seen in other works e.g. first [1]. I am very confident that the
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coefficients for the periodic case should also be correct even though there is
no reference data for them. The same coefficients are obtained by doing the
enumeration by hand, which can be done up to a length of 3 with relative
ease.

It is known, that cN should be scaling with respect to (2.3). As one can
see in figure 4, this holds true even for the periodic walks in the different
categories.

2 4 6 8 10 12 14 16 18
N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g(

c N
)

Normal self avoiding
Category 1
Category 2
Category 3

Figure 4: Fit for the coefficients cN versus the length N . Linear
regression was performed to get an estimate for the connective

constant. The fitting parameters can be seen in table 4.

It is also interesting to look at which percentage fN of the normal walks
are periodic. In figure 5 one can see the behaviour of this percentage. It
seems, that the percentage is going to approach a bound as the length N
gets bigger.
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Figure 5: Percentage of periodic walks fN with respect to
normal self-avoiding walks versus the length of the walks N .

4.2 Connective constant

Using the number of possible walks cN , we obtained as seen before and
the corresponding length of the walks N , one can easily calculate an upper
bound for the connective constant µ. This can be seen in (2.4) and (2.5),
whereby the results are noted down in table 3.

None Category 1 Category 2 Category 3
µ16 2,7689 2,6448 2,3405 2,2713
µ17 2,7642 2,6443 2,3529 2,2860
µ18 2,7593 2,6439 2,3653 2,3005

Table 3: Upper bound for the connective constant µ obtained from exact
enumeration for all single periodic boundary conditions.

It does seem, that the upper bound does not converge for periodic walks in
the category two and three i.e. the connective constant increases with the
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walk length N . But that should change for larger N , which is confirmed
later in the pivot algorithm section.

As expected, the more the walks are restricted with periodic boundaries the
less valid walks cN are obtained. In conclusion, one could also expect a
smaller connective constant µ. This seems to even hold true for these small
lengths N .

On the other hand, it is possible to use (2.3) and linear regression to get a
rough estimate for the connective constant µ. One takes the logarithm on
(2.3), which yields

log cN = logA+N logµ+ (γ − 1) logN . (4.1)

For small N the last part (γ− 1) logN ≈ 0 since it is known, that γ = 43
32 in

the square lattice case [7, p. 7]. This linear regression can be seen above in
figure 4 with the results for the amplitude A and the connective constant µ
noted down in table 4.

None Category 1 Category 2 Category 3
A 1,8180±0,0262 1,6091±0,0129 0,6422±0,0513 0,2770±0,0602
µ 2,7339±0,0024 2,6340±0,0012 2,4806±0,0046 2,4328±0,0054

Table 4: Connective constant µ and amplitude A obtained from linear
regression as seen in figure 4 with there respective errors σ.

The result seems quite promising and are not that far away from the ex-
pected results of µsq = 2, 63815853031(3) [5].

4.3 Critical exponents

To obtain the critical exponents ν one has to calculate the mean squared
end to end distance 〈|ω(N)|2〉 or mean squared gyration radius 〈|S(N)|2〉 as
defined in equation (2.6) and respectively (2.10). These two properties were
recorded for every enumerated length N < 19.

Afterwards, one uses weighted least square regression, for which the theo-
retical background can be seen in section 3.3, to obtain estimates for the
critical exponent ν and the amplitudes E and F .

In other words, we fit the function

Y = AN2ν(1 +BN−∆) (4.2)
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respectively for the end to end distance Y = 〈|ω(N)|2〉 and the gyration
radius Y = 〈|S(N)|2〉.

The resulting fits can be seen in figure 6 for the means squared end to end
distance and in figure 7 for the mean squared gyration radius. The fits looks
nearly identical with the only exception being the different amplitude A.

One could also do a linear fit by applying the logarithm, this is done later
for the results obtained via the pivot algorithm. These two different fitting
methods should yield the same fitting parameters though.

The estimates for the critical exponents ν and amplitudes A, that were
obtained, can be found with their respective errors in table 5. Again sorted
for the different categories defined above.

Since our length is still pretty small, one adds the dominant correction to
scaling term BN−∆ as seen above in section 2.5. I considered ∆ as constant
with the value ∆ = 3/2 as compelling evidence can be found to confirm this
[8].
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Figure 6: Fit for obtaining the critical exponent ν via mean
squared end to end distance.
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Figure 7: Fit for obtaining the critical exponent ν via mean
squared gyration radius.

none K1 K2 K3

Aee 0,8645±0,0222 1,0704±0,0099 1,3523±0,0159 1,3843±0,0199
νee 0,7373±0,0039 0,7506±0,0017 0,7650±0,0019 0,7702±0,0026
Agy 0,1239±0,0018 0,1369±0,0012 0,1683±0,0058 0,1766±0,0057
νgy 0,7334±0,0022 0,7310±0,0013 0,7202±0,0053 0,7149±0,0049

Table 5: Fitting parameters for the critical exponent fits, as can be seen
in figure 6 and figure 7.

Even though the results seem too small in comparison to the anticipated
result ν = 3/4 [14], they are by far in the margin of error for these small
lengths N . The values for ν considering the different periodic walks do not
diverge much, which could already be a small evidence for the independence
of the critical exponent to the periodic boundary.

Overall, it seems that the more one restricts the walks by periodic boundary
conditions, the bigger the end to end distance gets. Therefore, the amplitude
increases from one category to the next. The same applies to the gyration
radius and is quite interesting.
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5 Pivot algorithm

As before in the enumeration case, the simulation was written in C++ and
analysed with python mainly using the scipy library [13]. In extend the
program was parallelized/multi-threaded, which has to be considered in the
analysis.

5.1 Preliminary tests

In order to test the slightly modified pivot algorithm, 107 SAWs of lengths
N = 15 and N = 18 were generated on the square lattice. I compared
the mean squared end to end distance 〈|wN |2〉 and mean squared gyration
radius 〈|SN |2〉 with the known exact values from the enumeration. All this
was done for all categories defined beforehand.

Operation none K1 K2 K3

〈|w15|2〉 47,1793 (47,2177) 62,3112 (62,3329) 85,3263 (85,3286) 89,9511 (89,8814)
〈|S15|2〉 6,7514 (6,7843) 7,35052 (7,3734) 8,5106 (8,5192) 8,6739 (8,6699)
〈|w18|2〉 61,7420 (61,7664) 82,0710 (82,0911) 112,4713 (112,5375) 118,5662 (118,68507)
〈|S18|2〉 8,76263 (8,80733) 9,53353 (9,5666) 10,9855 (11,0093) 11,1677 (11,1869)

Table 6: Preliminary tests for the slightly modified pivot algorithm.

The known exact values are shown in parentheses and were obtained via
exact enumeration, which can be seen above. The test yields quite promising
results i.e, they agree with the enumeration within statistical error of about
±0, 5%.

5.2 Critical exponent

On the two dimensional square lattice walks of length N ranging from 20 to
1000 were generated. For every length, 106 walks were evaluated. In other
words, 106 sweeps were recorded after considering autocorrelation.

Autocorrelation, for which an example can be seen in figure 8, was deter-
mined and according to it only every fourth sweep recorded. This was done
for every running thread in the simulation, since they were initialized inde-
pendent from each other. In hindsight, it would have been enough to only
consider it once, since for a lag greater than 4 the correlation coefficient is
smaller than 0, 5. This holds true for every thread.
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Figure 8: Autocorrelation plot for the end to end distance with
length N = 300 on a single single thread

I also discarded the first ∼500 sweeps depending on the thread, since it
looked like the equilibration time was achieved after that period i.e. the
properties only fluctuate around the normal distribution after these first
sweeps and there seems to be no drifting behaviour afterwards. An example
for this can be seen in figure 9. Where the deviation from the mean is
plotted against the time series. Also the standard deviation of the mean
is illustrated in the background. If one looks at the first 500 sweeps one
can see this small drifting behaviour towards this standard deviation of the
mean. This was done because other than noted before, the initial state of
the simulation was not random but a rod.
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Figure 9: Mean deviation of the gyration radius versus the first
4000 sweeps. The length of the simulated walk was N = 150 and
if looked at closely, it is possible to see the drifting behaviour of

the first ∼500 sweeps.

Now to obtain the critical exponent ν via regression, one has to calculate
the mean squared end to end distance 〈|wN |2〉 or the mean squared gyration
radius 〈|SN |2〉. This was done while the simulation was running via the
moving average.

Afterwards, considering every length N , the values for 〈|wN |2〉 and 〈|SN |2〉
were plotted against their corresponding walk length. Weighted least square
regression was performed to obtain the critical exponent. There are two
different types of regression, that were considered, i.e. weighted non-linear
least squares and weighted linear least squares. The fitting function for the
non-linear least square regression can be seen in equation (2.7). For the
linear regression one modifies this function by applying the logarithm such
that

log(Y ) = log(DN2ν) = 2νlog(N) + log(D) , (5.1)

which can be seen at greater extend in section 3.3.

Whereby, the slope of the linear fit is 2ν and the interception is log(D). For
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both methods no correction to scaling term was used, since the length N
is quite big already. But as before in the enumeration case one has to use
weights considering the inverse variance.

Both regression models were done for the mean end to end distance and
the mean gyration radius. For the end to end distance an example using
both methods can be seen in figure 10. Considering the gyration radius
one repeats the regression explained above. This is not shown in any figure
because it looks exactly the same as the end to end distance and yields
nothing new.

The resulting estimates for the fit parameters are noted down in the table
7 and table 8. For every linear regression the goodness of the fit is godlike
(≈ 0.9999), in contrast to the least square regression, where the goodness of
fit is a bit smaller but still nearly perfect (≈ 0.98). Hence, the fit parameters
for the linear regression should be a bit better.

It seems, that the critical exponent ν does not change too much from one
category to another (about 1% deviation). As in the enumeration case this
could prove that the critical exponent ν is indipendent from the choosen
boundary condition. This behaviour was expected, since the critical expo-
nent is considered to be universal for the dimension of the system.
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(a) Non-linear fit for the mean squared end to end distance versus the length
using weighted least squares. Errorbars are plotted but too small to see.
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(b) Linear fit for the mean squared end to end distance versus the length using
weighted least squares.

Figure 10: Fitting of critical exponent ν and amplitude D via mean
squared end to end distance.

On the other hand, the amplitudes get bigger the more restrictions are
applied on the walks i.e. the different categories. Furthermore, collapsed
walks are less likely to be periodic, hence bigger amplitudes.

One could interpret the results as confirmation, that the critical exponent ν
is independent from periodicity. This looks quite promising, but the critical
exponents are still varying a bit. After considering even longer walks, one
should be able to give a more accurate prediction about this independence.

Fit model None K1 K2 K3

D
non-linear 0,7439±0,0375 1,0589±0,0393 1,6908±0,0841 2,6726±0,4246

linear 0,8302±0,0012 1,0705±0,0007 1,4596±0,0015 1,5348±0,0039

ν
non-linear 0,7532±0,0040 0,7518±0,0029 0,7406±0,0039 0,7577±0,0125

linear 0,7439±0,0012 0,7511±0,0007 0,7532±0,0015 0,7540±0,0039

Table 7: Estimated parameters for the critical exponent ν and the
amplitude D obtained from fitting the mean end to end distance versus the

length N .
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Fit model None K1 K2 K3

F
non-linear 0,1076±0,0033 0,1243±0,0020 0,1561±0,0084 0,2031±0,0307

linear 0,1184±0,0018 0,1290±0,0018 0,1514±0,0023 0,1558±0,0043

ν
non-linear 0,7502±0,0024 0,7452±0,0013 0,7363±0,0042 0,7140±0,0119

linear 0,7418±0,0018 0,7415±0,0018 0,7382±0,0023 0,7362±0,0043

Table 8: Estimated parameters for the critical exponent ν and the
amplitude F obtained from fitting the mean gyration radius versus the

length N .

5.3 Connective constant

To get an estimate of the connective constant from a Monte Carlo simulation,
one can use an approach first done by Nathan Clisby [15].

In short words, we create two walks ω1, ω2 with length N . We add them
together with one ending at (0, 0) and the other one starting at (0, 1). This
is in the following expressed as ω1 � ω2.

It is checked if the combined walk of length 2N + 1 is still valid i.e. we
calculate our indicator function which is defined as

B(ω1, ω2) =
{

0 if ω1 � ω2 not self-avoiding
1 if ω1 � ω2 self-avoiding (5.2)

and update the mean value of B(ω1, ω2) which is defined as

B̃N = 1
c2
N

∑
|w1|=N,|w2|=N

B(ω1, ω2) (5.3)

= C2N+1
4C2

N

. (5.4)

The longest walks, I enumerated on the two dimensional hypercubic lattice,
have a length of 18. We can get an estimate for higher order number of
steps cN with our mean indicator BN recursively using the result from the
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enumeration:

c37 = B̃18c
2
18 (5.5)

c75 = B̃37c
2
37 = B̃37B̃

2
18c

4
18

c151 = B̃75c
2
75 = B̃75B̃

2
37B̃

4
18c

8
18

...

With this recursion and the definition of the connective constant

µN ≡ c1/N
N (5.6)

logµN = 1
N

log cN

one can get a good estimate of the connective constant while only using
Monte Carlo methods. All of this can be seen at greater length in [15], it
is a quite pleasant read. I would recommend to read it for in depth details
about this method.

I did this not only for self-avoiding walks, but also for the periodic self-
avoiding walks. The algorithm is done exactly the same with the only ex-
ception being that the walks are also checked for PBCs and accordingly
added to different lists. This can be done parallel for the different categories
defined above.

In the following table 9 the results (obtained via the recursive algorithm)
for the connective constant and for each of my categories defined above are
noted down.

None Category 1 Category 2 Category 3
µ18 2,75(9) 2,64(3) 2,36(5) 2,30(0)
µ37 2,74(2) 2,56(8) 2,18(0) 1,97(8)
µ75 2,69(8) 2,49(0) 2,04(1) 1,82(2)
µ151 2,67(4) 2,44(6) 1,97(1) 1,74(3)
µ303 2,65(8) 2,42(0) 1,92(8) 1,69(6)
µ607 2,64(9) 2,40(5) 1,90(5) ?

Table 9: Estimate of the connective constant µ obtained via Monte Carlo
simulation.

I could not get enough valid periodic saw configurations for the third cate-
gory at a length N = 607. The reason for this is just computing time. The
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effective length of these walks, if one considers periodicity, is

Neff = 3N(= 1821)

and the acceptance rate for the third category and this length is less than
0, 01%. As such one has to obtain quite a few walks to get a usable estimate.

In comparison to the earlier results from the enumeration, which did not
seem to converge, these results clearly approach a bound. For the normal
self-avoiding case it is believed that µ = 2, 63815 as was mentioned before
and can be seen in [16].

Using the recursion (5.5) one also gets an rough estimate for the number of
possible walks cN , which are noted down in table 10.

None Category 1 Category 2 Category 3
c18 1,24(6) ·108 6,03(0) ·107 9,08(1) ·106 2,83(1) ·106

c37 1,63(5) ·1016 1,44(8) ·1015 3,33(4) ·1012 9,22(6) ·1010

c75 2,16(2) ·1032 5,23(4) ·1029 1,75(0) ·1023 3,53(7) ·1019

c151 3,17(0) ·1064 4,76(6) ·10058 3,18(4) ·1044 2,90(0) ·1036

c303 4,76(4) ·10128 2,04(4) ·10116 2,75(5) ·1086 3,36(2) ·1069

c607 7,40(8) ·10256 2,20(1) ·10231 9,71(1) ·10169 2,71(0) ·10135

Table 10: Rough estimate for the number of possible walks cN obtained
via Monte Carlo simulation.

It is also possible to get a lower bound or estimate for even higher order coef-
ficients using the generating function and the obtained connective constant.
By comparison of coefficients in (2.9) and (2.8), one sees that

cN ≥ µN . (5.7)

Using this method and µ607, one obtains roughly the same coefficients in
comparison to the recursion. This can be seen in table 11.

Method None Category 1 Category 2 Category 3
c607 Recursive 7,40(8) ·10256 2,20(1) ·10231 9,71(1) ·10169 2,71(0) ·10135

c607 cN ≥ µN 7,42(0) ·10256 2,17(1) ·10231 9,53(3) ·10169 1,89(2) ·10135

Table 11: Comparison between two different methods for obtaining the
number of walks cN .
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Even another approach to obtain the connective constant µ would be to
look at the plot of the different indicator functions B̃N versus the length N ,
where one could use the exponential decay

B̃N = ae−bN + c (5.8)

as fitting function for the relation. This was done in figure 11, whereby the
fitting parameters can be seen in table 12.
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Figure 11: Indicator function B̃N versus the length N , whereby
an exponential decay was fitted and the obtained fitting

parameters can be seen in table 12.

None Category 1 Category 2 Category 3
a 0,8452±0,0911 0,4644±0,0699 0,0831±0,0146 0,0238±0,0033
b 0,0116±0,0031 0,0196±0,0056 0,0442±0,0085 0,0435±0,0067
c 0,3159±0,0498 0,0513±0,0216 0,0025±0,0014 0,0005±0,0003

Table 12: Estimate of the connective constant µ obtained via Monte
Carlo simulation.

The fitting parameters, as seen in table 12, have quite big errors, e.g. in the
third category the error and value for c are nearly identical. This value is
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also very close to zero, which could be an indicator for convergences towards
zero. Furthermore, if the probability B̃N is zero, no walks get accepted and
that method could not be valid for the periodic case.

Afterwards, it is possible to use the function with their respective fitting
parameters to calculate an estimate for the connective constant µ. The
results for this approach can be seen in comparison to the recursion in table
13.

None Category 1 Category 2 Category 3
µ Exponential fit 2,63(9) 2,38(6) 1,91(2) 1,65(2)
µ Recursion 2,64(9) 2,40(5) 1,90(5) 1,69(6)

Table 13: Estimate of the connective constant µ obtained via fitting of
the indicator function B̃N .
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6 Conclusion

Periodic walks are a fun small extension to normal self-avoiding walks. The
extension gives insight on multiple global phenomena such as the critical
exponent ν and the connective constant µ.

The critical exponent ν was considered to be lattice depended and as such
should still remain the same as one introduces periodic boundary condi-
tions. This periodic independence was already suspected after looking at
the enumeration data. Furthermore, by using the pivot algorithm even more
evidence was found, that this indeed holds true.

Looking at the amplitudes A of the critical exponent fits Y = AN2ν , the
amplitudes get bigger the more we restrict the walks with periodic boundary
conditions. Therefore, the end to end distance is bigger the more periodic
boundary conditions we propose. This also holds true for the gyration radius
and could be explained by simply considering collapsed walks, which are
overall less likely to be periodic.

By taking a lot of inspiration from Nathan Clisby [15] method, the con-
nective constant µ was determined for every proposed category of periodic
self-avoiding walks. It seems, that the introduced acceptance rate B̃N does
converge towards zero in the third category. Therefore, this could imply
that this method can not be used for larger walks with a lot of periodic
restrictions.

Using this acceptance rate, the coefficients cN were calculated. As expected,
these coefficients scale according to cN ∝ AµNNγ−1, this still holds true for
any periodic boundary condition proposed.

The connective constants get smaller as one restricts the self-avoiding walks
with more periodic boundary conditions, as was done by introducing three
different categories. This behaviour was expected since less periodic walks
exist and furthermore the number of walks cN and the connective constant
are directly proportional.
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7 Future prospects

There is a lot of work done for the normal self-avoiding walk, what can
not be said for the periodic case. It would be quite interesting to see some
of the same approaches for the periodic case. Especially considering other
categories than chosen in this bachelor’s thesis.

It would be especially interesting to see the simulations done in higher di-
mensions and/or on other lattice types. Honeycomb lattice could be quite
informative, since the exact connective constant is known for non-interacting
walks on it and maybe it is possible to get some mathematically rigorous
results in the periodic case [17].

Implementation of a faster and more efficient pivot algorithm would enable
the simulation of way longer walks [4]. Furthermore, the error of the result-
ing properties could be scaled down. Maybe even the independence of the
critical exponent with regards to periodicity could be shown with greater
certainty.

One could also look at phase transitions of this model by implementing a
self-attractive case, which could also be quite interesting to see.

Overall, there are a lot of different quite fascinating cases, which can be
considered in the future. All of these would be nice additions to the as of
now very narrow contemplations of periodic self-avoiding walks.
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